公司新闻 行业动态

EMC易倍体育 易倍EMC一种氮化铝陶瓷表面金属化方法pdf

发布时间:2024-04-19      来源:网络


  本发明属于磁控溅射技术领域,公开了一种氮化铝陶瓷表面金属化方法,该方法包括如下步骤:先对氮化铝陶瓷基板进行清洗,然后对清洗后的氮化铝陶瓷基板进行热处理,利用ALD技术在氮化铝陶瓷基板上沉积AlN籽晶层,再利用磁控溅射技术在AlN籽晶层上依次沉积金属过渡层和金属层,最后对沉积的金属层进行退火处理。该方法通过结合清洗、热处理、ALD技术、磁控溅射和退火等多个步骤,实现了对氮化铝陶瓷表面的金属化处理;解决了传统的直接利用磁控溅射在氮化铝陶瓷基底上沉积金属层过程中,金属层和陶瓷基底之间有空隙、结合力弱、

  (19)国家知识产权局 (12)发明专利申请 (10)申请公布号 CN 116986926 A (43)申请公布日 2023.11.03 (21)申请号 5.6 C23C 16/02 (2006.01) C23C 14/58 (2006.01) (22)申请日 2023.09.25 C23C 28/00 (2006.01) (71)申请人 苏州博志金钻科技有限责任公司 地址 215000 江苏省苏州市高新区长亭路8 号大新科技园3幢二楼 (72)发明人 靳世旭刘鑫潘远志 (74)专利代理机构 苏州智品专利代理事务所 (普通合伙) 32345 专利代理师 唐学青 (51)Int.Cl. C04B 41/90 (2006.01) C23C 16/34 (2006.01) C23C 16/455 (2006.01) C23C 14/18 (2006.01) C23C 14/35 (2006.01) 权利要求书2页 说明书9页 附图4页 (54)发明名称 一种氮化铝陶瓷表面金属化方法 (57)摘要 本发明属于磁控溅射技术领域,公开了一种 氮化铝陶瓷表面金属化方法,该方法包括如下步 骤:先对氮化铝陶瓷基板进行清洗,然后对清洗 后的氮化铝陶瓷基板进行热处理,利用ALD技术 在氮化铝陶瓷基板上沉积AlN籽晶层,再利用磁 控溅射技术在AlN籽晶层上依次沉积金属过渡层 和金属层,最后对沉积的金属层进行退火处理。 该方法通过结合清洗、热处理、ALD技术、磁控溅 射和退火等多个步骤,实现了对氮化铝陶瓷表面 的金属化处理;解决了传统的直接利用磁控溅射 在氮化铝陶瓷基底上沉积金属层过程中,金属层 和陶瓷基底之间有空隙、结合力弱、膜层不致密 A 的问题。 6 2 9 6 8 9 6 1 1 N C CN 116986926 A 权利要求书 1/2 页 1.一种氮化铝陶瓷表面金属化方法,其特征在于,包括以下步骤: S1.对氮化铝陶瓷基板进行清洗; S2.对清洗后的所述氮化铝陶瓷基板进行热处理; S3.利用ALD技术在所述氮化铝陶瓷基板上沉积AlN籽晶层; S4.利用磁控溅射技术在所述AlN籽晶层上依次沉积金属过渡层和金属层; S5.对沉积的所述金属层进行退火处理。 2.根据权利要求1所述的氮化铝陶瓷表面金属化方法,其特征在于: 所述步骤S1中包括对所述氮化铝陶瓷基板进行超声清洗和等离子清洗。 3.根据权利要求1所述的氮化铝陶瓷表面金属化方法,其特征在于: 步骤S2所述热处理包括在氮气、氩气或氢气的气氛下进行,温度为1000℃~1200℃,处 理时间为1h~2h。 4.根据权利要求1所述的氮化铝陶瓷表面金属化方法,其特征在于: 所述步骤S3中包括采用逐层反应沉积的方法,在氮化铝陶瓷基板上形成AlN籽晶层。 5.根据权利要求4所述的氮化铝陶瓷表面金属化方法,其特征在于, 所述步骤S3中还包括以下步骤: S31:将氮化铝陶瓷基板放入以惰性气体为载气的反应室内 ,然后对反应室抽线Pa,对反应室进行加热,温度为300℃~500℃; S32:在反应室内通入前驱体三甲基铝,在氮化铝陶瓷基板表面进行吸附 ; S33:停止供给所述前驱体三甲基铝后,除去所述反应室内残留的前驱体三甲基铝; S34:在反应室内通入还原性气体,与吸附在氮化铝陶瓷基板表面的前驱体三甲基铝发 生反应; S35:停止供给所述还原性气体后,除去所述反应室内残留的还原性气体; S36:反复步骤S31至S35,直至在氮化铝陶瓷基板上形成预定厚度的AlN籽晶层。 6.根据权利要求1所述的氮化铝陶瓷表面金属化方法,其特征在于: 步骤S4中所述的金属过渡层配置为Ti/TiW或Cr/NiCr,所述金属层配置为Cu层; 沉积金属过渡层和Cu层的溅射条件为线V、氮化铝 陶瓷基板温度100℃~200℃、溅射功率5kW~8kW,其中溅射Cu层的时间为30min~240min, Cu层的厚度为1μm~10μm; 所述步骤S5中的退火处理在氢气的氛围中进行,温度为350℃,时间为1h~3h。 7.根据权利要求2所述的氮化铝陶瓷表面金属化方法,其特征在于:所述步骤S1中还包 括以下步骤: S11:对氮化铝陶瓷基板进行超声清洗:在振动频率为80kHz的条件下,先将氮化铝陶瓷 基板放入丙酮中浸润3min,再放入无水乙醇中浸润5min,将氮化铝陶瓷基板用水冲洗干净 后在纯水中超声清洗8min,最后将氮化铝陶瓷基板离心甩干; S12:对氮化铝陶瓷基板进行等离子清洗 :在气压0 .5Pa~5Pa 、氩气流量400sccm~ 500sccm、温度150℃、偏压‑800V~‑500V条件下,对超声清洗后的氮化铝陶瓷基板进行等离 子清洗处理20min~30min。 8.根据权利要求7所述的氮化铝陶瓷表面金属化方法,其特征在于, 在步骤S11之前还包括,使用表面活性剂处理氮化铝陶瓷基板。 2 2 CN 116986926 A 权利要求书 2/2 页 9.根据权利要求1所述的氮化铝陶瓷表面金属化方法,其特征在于, 在步骤S1之后且步骤S2之前包括,采用微弧氮化技术对氮化铝陶瓷基板进行处理,形 成氮化膜层。 10.根据权利要求1所述的氮化铝陶瓷表面金属化方法,其特征在于, 在步骤S4之后且步骤S5之前包括,使用激光处理技术对沉积的金属层进行加热处理。 3 3 CN 116986926 A 说明书 1/9 页 一种氮化铝陶瓷表面金属化方法 技术领域 [0001] 本发明涉及磁控溅射技术领域,具体涉及氮化铝陶瓷表面金属化方法。 背景技术 [0002] 氮化铝陶瓷具有优良的导热和电性能,同时具有与硅匹配的膨胀系数,因此被广 泛认为是理想的集成电子封装材料。近年来,关于氮化铝陶瓷的金属化技术的研究报道逐 渐增多,其中主要集中在氮化铝陶瓷表面的覆铜金属化技术。目前常见的氮化铝覆铜技术 主要采用磁控溅射的方法 ,通过在氮化铝陶瓷表易倍体育 EMC易倍面直接沉积金属过渡层,如钛 (Ti)、银 (Ag)、钨(W)、钼(Mo)等金属化层,然后再沉积铜层。 [0003] 由于氮化铝陶瓷表面往往含有非晶态的玻璃相,这会导致陶瓷表面与金属层之间 的结合性能减弱。同时,氮化铝陶瓷表面的非晶态玻璃相在微观上呈现出凹凸不平的特点。 如果直接使用磁控溅射等技术在其表面沉积金属过渡层及金属层,很难确保金属层能够完 全平整地覆盖陶瓷表面,可能会在陶瓷基底与金属层之间留下空隙,进而导致金属层与陶 瓷基底之间的结合性能减弱。 发明内容 [0004] 为解决背景技术中存在的技术问题,本申请提供一种氮化铝陶瓷表面金属化方 法,并采用如下技术方案: 一种氮化铝陶瓷表面金属化方法,其包括如下步骤: S1.对氮化铝陶瓷基板进行清洗; S2.对清洗后的氮化铝陶瓷基板进行热处理; S3.利用ALD技术在氮化铝陶瓷基板上沉积AlN籽晶层; S4.利用磁控溅射技术在AlN籽晶层上依次沉积金属过渡层和金属层; S5.对沉积的金属层进行退火处理。 [0005] 上述步骤S1对氮化铝陶瓷基板进行清洗:这一步骤是为了去除氮化铝陶瓷基板表 面的杂质和污染物,确保基板表面干净,从而为后续的金属化工艺提供良好的基础。 [0006] 步骤S2对清洗后的基板进行热处理旨在去除氮化铝陶瓷基板表面的残留污染物, 并使其表面变得更加平整和均匀,以提升与后续制备的AlN籽晶层之间的结合性能。氮化铝 陶瓷基板通常是通过研磨加工工艺来制备的;在研磨过程中,磨料与氮化铝陶瓷基板之间 的磨削作用会导致基板表层产生压应力;这种压应力很容易超过材料的屈服强度,从而导 致材料内部产生残余应力。热处理初期,随着温度的升高,材料表面的晶体结构中出现柱状 晶粒和玻璃相的流动;这使得变质层最外层的晶体和磨削缺陷逐渐消失;然而,材料内层的 温度略低于外层,晶粒生长速度较慢,各种晶体缺陷仍然存在于氮化铝陶瓷基板材料内部, 导致内层的压应力未完全释放。随着热处理时间的延长,氮化铝陶瓷基板表面的等轴状晶 粒开始转变为柱状晶粒,从而逐渐释放磨削热应力。随着时间的进一步延长,残留在内层的 应力随着晶体缺陷的修复而逐渐释放。通过热处理后有效去除了氮化铝陶瓷基板表层的残 4 4 CN 116986926 A 说明书 2/9 页 余应力,这有利于提高氮化铝陶瓷基板与后续制备的AlN籽晶层的结合性能。 [0007] 步骤S3利用ALD技术在氮化铝陶瓷基板上沉积AlN籽晶层:ALD(Atomic  Layer  Deposition,原子层沉积)技术是一种薄膜沉积技术,通过逐层反应沉积材料。ALD技术作为 沉积方法,在原氮化铝陶瓷基板表面形成一层新的纯相氮化铝籽晶层,覆盖了原氮化铝陶 瓷基板表面的非晶态玻璃相,不仅增强了氮化铝陶瓷基板表面与金属层之间的润湿性,而 且通过ALD技术完美地将原氮化铝陶瓷基板凹凸不平的表面填充平整,有效减少了氮化铝 陶瓷基板表面与金属层之间的空隙,从而进一步增强了氮化铝陶瓷基板与金属层之间的结 合性能 ;此外,氮化铝陶瓷基板表面更加平整也有利于保障后续磁控溅射的金属层厚度的 均匀性。 [0008] S4利用磁控溅射技术在AlN籽晶层上先后沉积金属过渡层和金属层。磁控溅射技 术是一种常见的薄膜沉积技术,通过离子轰击和溅射材料来实现薄膜的沉积。在这种方法 中,先后使用磁控溅射技术在AlN籽晶层上沉积金属过渡层和金属层可以为氮化铝陶瓷提 供表面的金属化处理,增强其导电性和连接性能。 [0009] S5对沉积的金属层进行退火处理:通过加热材料并保持一段时间。随着退火温度 的增高,晶粒逐渐长大,金属畸变能降低,晶界迁移促使金属层的平均晶粒尺寸逐渐增大, 金属层更加致密。杨氏模量在<111>方向存在最大值,{111}晶面的应变能最高,{100}晶 面最低,退火会促使金属层中应变能较高的 {111}晶面转换为能量较低的晶面,从而使得 {111}取向的晶粒有所减少,从而使金属层中的应力降低,进而提升金属层的电导性和稳定 性。 [0010] 综上所述,该氮化铝陶瓷表面金属化方法通过结合清洗、热处理、ALD技术、磁控溅 射和退火等多个步骤,实现了对氮化铝陶瓷表面的金属化处理。通过上述工艺实现了氮化 铝陶瓷表面金属化,提高了其导电性和连接性能。 [0011] 在上述技术方案的基础上至少存在以下更优的技术方案。 [0012] 在步骤S1中,引入表面活性剂处理氮化铝陶瓷基板,以改善表面的润湿性和降低 表面张力。这样可以更好地促进清洗剂的渗透和去除污染物,从而提高清洗效果和减少残 留。 [0013] 在步骤S2之前,采用微弧氮化技术对氮化铝陶瓷基板进行处理,形成氮化膜层。这 一处理可以增强氮化铝陶瓷基板表面的耐磨性、耐腐蚀性和附着力,提高金属层和氮化铝 陶瓷基板的结合强度。 [0014] 在步骤S4之后,使用激光处理技术对沉积的金属层进行加热处理,以提高金属层 的结晶性和晶界质量。这样可以进一步提高金属层的导电性和机械性能。 [0015] 在步骤S5之后,对金属化处理后的氮化铝陶瓷基板进行表面涂层保护。涂层可以 增加氮化铝陶瓷基板的耐磨性和耐腐蚀性,延长金属化处理的寿命。 附图说明 [0016] 图1为氮化铝陶瓷表面金属化结构示意图。 [0017] 图2为氮化铝陶瓷基板扫描电镜图。 [0018] 图3为氮化铝陶瓷基板经热处理后的扫描电镜图。 [0019] 图4为采用微弧氮化技术形成氮化膜层的扫描电镜图。 5 5 CN 116986926 A 说明书 3/9 页 [0020] 图5为氮化铝陶瓷基板上沉积AlN籽晶层的扫描电镜图。 [0021] 图6为本实施例氮化铝陶瓷表面金属化后金属层表面扫描电镜图。 [0022] 图7为激光处理技术对沉积的金属层处理后的金属层表面扫描电镜图。 [0023] 图8为本实施例氮化铝陶瓷金属化后截面扫描电镜图。 [0024] 其中:1为氮化铝陶瓷基板,2为AlN籽晶层,3为金属过渡层,4为金属层。 具体实施方式 [0025] 为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请做进 一步的详细描述。 实施例一 [0026] 一种氮化铝陶瓷表面金属化方法,包括: S1.对氮化铝陶瓷基板进行清洗,包括超声清洗和等离子清洗; 超声清洗在振动频率为80kHz的条件下 ,先将氮化铝陶瓷基板放入丙酮中浸润 3min,再放入无水乙醇中浸润5min,将氮化铝陶瓷基板用水冲洗干净后在纯水中超声清洗 8min,最后将氮化铝陶瓷基板离心甩干;等离子清洗采用气压0 .5Pa~5Pa 、氩气流量 400sccm~500sccm、温度150℃、偏压‑800V~‑500V条件下进行等离子清洗处理20min~ 30min; S2.对清洗后的氮化铝陶瓷基板进行热处理,热处理在氮气、氩气或氢气的气氛中 进行,温度为1000℃~1200℃,时间为1h~2h; S3 .利用ALD技术在氮化铝陶瓷基板上沉积AlN籽晶层,此步骤通过在惰性气体的 载气下逐层沉积AlN,形成AlN籽晶层; S4.利用磁控溅射技术在AlN籽晶层上先后沉积金属过渡层和金属层; S5.对沉积的金属层进行退火处理,退火处理在氩气的氛围中进行,温度为350℃, 时间为1h~3h。 [0027] 本实施例使用ALD技术在氮化铝陶瓷基板1上沉积AlN籽晶层2,然后使用磁控溅射 技术在AlN籽晶层2上先后沉积金属过渡层3和金属层4,对沉积的金属层进行退火处理后得 到如图1所示的表面金属化的氮化铝陶瓷。 [0028] 图2为氮化铝陶瓷基板扫描电镜图,从图2中可以看出热处理之前氮化铝陶瓷基板 表面不够平整,存在一些孔洞缺陷。经热处理后氮化铝陶瓷基板扫描电镜图如图3所示,当 热处理时间充分时,氮化铝陶瓷基板表面结构中等轴状晶粒开始转变为柱状晶粒,一定程 度上使氮化铝陶瓷基板表面变得更加平整和均匀。 实施例二 [0029] 实施例一基础上,一种氮化铝陶瓷表面金属化方法,所述步骤S3中还包括以下步 骤: S31 .将氮化铝陶瓷基板放入以惰性气体为载气的反应室内 ,然后对反应室抽线Pa,对反应室进行加热,温度为300℃~500℃; S32.在反应室内通入前驱体三甲基铝(TMA, 99.7%),在氮化铝陶瓷基板表面进行 6 6 CN 116986926 A 说明书 4/9 页 吸附和反应; S33 .停止供给所述前驱体三甲基铝后,除去所述反应室内残留的前驱体三甲基 铝;所述反应室内残留气体的方法为:用惰性气体置换所述反应室内的气体环境,或将所述 反应室内线.在反应室内通入还原性气体,与吸附在氮化铝陶瓷基板表面的前驱体三甲基 铝发生反应;所述还原性气体为混合比例为4:1的氮气与氢气的混合气体或者NH 气体; 3 S35.停止供给所述还原性气体后,除去所述反应室内残留的还原性气体; S36.反复进行上述S31至S35的过程,在氮化铝陶瓷基板上形成预定厚度的AlN籽 晶层。 实施例三 [0030] 实施例一基础上,一种氮化铝陶瓷表面金属化方法,所述步骤S1中还包括以下步 骤: S11.对氮化铝陶瓷基板进行超声清洗:在振动频率为80kHz的条件下,先将氮化铝 陶瓷基板放入丙酮中浸润3min,再放入无水乙醇中浸润5min,将氮化铝陶瓷基板用水冲洗 干净后在纯水中超声清洗8min,最后将氮化铝陶瓷基板离心甩干; S12 .对氮化铝陶瓷基板的等离子清洗步骤为:在气压0 .5Pa~5Pa 、氩气流量 400sccm~500sccm、温度150℃、偏压‑800V~‑500V条件下,对超声清洗后的氮化铝陶瓷基 板进行等离子清洗处理20min~30min。 [0031] 步骤S11中依次使用丙酮和无水乙醇进行浸润,然后使用超声波进行清洗。超声波 的振动频率和清洗液的浸润时间都有特定的设定值。这个步骤使用超声波清洗技术,以提 高氮化铝陶瓷基板表面的清洁度。步骤S12中描述了对经过超声清洗处理的氮化铝陶瓷基 板进行等离子清洗的具体过程。通过离子轰击表面来去除表面的污染物和杂质。在这个步 骤中,使用特定的气压、气体流量、温度和偏压条件下对氮化铝陶瓷基板进行等离子清洗处 理。这种等离子清洗技术可以进一步提高氮化铝陶瓷基板表面的清洁度和质量。通过S11和 S12步骤选择了特定的清洗方法和条件,以确保氮化铝陶瓷基板表面的干净度和质量,为后 续的金属化工艺提供更好的基础。提高了氮化铝陶瓷表面金属化的可行性和效果。 实施例四 [0032] 实施例一基础上,一种氮化铝陶瓷表面金属化方法,所述步骤S2中热处理选择在 氮气的气氛下进行,热处理的温度为1000℃~1200℃,热处理时间为1h~2h; 所述步骤S3中还包括以下步骤: S31 .将氮化铝陶瓷基板放入以惰性气体为载气的反应室内 ,然后对反应室抽线Pa,对反应室进行加热,温度为300℃~500℃; S32.在反应室内通入前驱体三甲基铝(TMA, 99.7%),在氮化铝陶瓷基板表面进行 吸附和反应; S33 .停止供给所述前驱体三甲基铝后,除去所述反应室内残留的前驱体三甲基 铝; S34.在反应室内通入还原性气体,与吸附在氮化铝陶瓷基板表面的前驱体三甲基 7 7 CN 116986926 A 说明书 5/9 页 铝发生反应;还原性气体为N /H (99.9%)混合气体(比例为4:1) ; 2 2 S35.停止供给所述还原性气体后,除去所述反应室内残留的还原性气体; S36.反复进行上述S31至S35的过程,在氮化铝陶瓷基板上形成预定厚度的AlN籽 晶层。 [0033] 步骤S2:热处理选择在氩气或氢气的气氛下进行,热处理的温度为1000℃~1200 ℃,热处理时间为1h~2h:这一步骤描述了热处理的条件。热处理是为了进一步改善氮化铝 陶瓷基板的表面性质和结构。通过选择氮气、氩气或氢气作为气氛,以及特定的温度和时间 参数,可实现对氮化铝陶瓷基板的有效处理。 [0034] 在S3步骤中,进一步描述了利用ALD技术在氮化铝陶瓷基板上沉积AlN籽晶层的具 体步骤。 [0035] 步骤S31:将氮化铝陶瓷基板放入以惰性气体为载气的反应室内,进行真空抽取和 加热。这一步骤使用惰性气体作为载气,以及特定的真空度和加热温度,为后续的ALD反应 做好准备。 [0036] 步骤S32:在反应室内通入前驱体三甲基铝,并与氮化铝陶瓷基板表面进行吸附和 反应。这一步骤选择了合适的前驱体和反应条件,以实现ALD过程。 [0037] 步骤S33:停止供给前驱体三甲基铝后,除去反应室内残留气体。这一步骤在ALD反 应后进行残留气体的清除,以确保反应的准确性和纯度。 [0038] 步骤S34:在反应室内通入还原性气体,与氮化铝陶瓷基板表面吸附的前驱体三甲 基铝发生反应。这一步骤选择适当的还原性气体和反应条件,以形成AlN籽晶层。 [0039] 步骤S35:停止供给还原性气体后,除去反应室内残留气体。 [0040] 步骤S36:反复进行上述S31至S35的过程,在氮化铝陶瓷基板上形成预定厚度的 AlN籽晶层。这一步骤通过多次的周期性反应来逐渐沉积AlN籽晶层,以控制所形成层的厚 度和均匀性。 [0041] 综上所述,通过补充的S2和S3步骤,该氮化铝陶瓷表面金属化方法进一步地使用 了特定的清洗、热处理和ALD技术。这些步骤选择了适合氮化铝陶瓷的处理条件和方法,以 实现金属化处理并形成AlN籽晶层。综合性地提高了氮化铝陶瓷表面金属化的可行性和效 果。 [0042] 进一步地,所述S33和S35中除去残留气体的方法为:用惰性气体置换所述反应室 内的气体环境,或将所述反应室内线中供给的还原性气体为混合比例为4:1的氮气与氢气的混合气体或者NH3 气体。 [0043] 步骤S33和步骤S35:除去残留气体的方法为用惰性气体置换所述反应室内的气体 环境,或将所述反应室内真空排气。这些方法选择了不同的气体置换或真空排气方法,以确 保反应室内的气体环境纯净,并去除残留气体对后续步骤的影响。 [0044] 步骤S34:还原性气体为混合比例为4:1的氮气与氢气的混合气体或者NH 气体。这 3 些选择使用了合适的还原性气体以实现与吸附在氮化铝陶瓷基板表面的前驱体的反应。 实施例五 [0045] 实施例一基础上,一种氮化铝陶瓷表面金属化方法,所述步骤S4中还包括以下步 8 8 CN 116986926 A 说明书 6/9 页 骤: S41.利用金属过渡层靶材对氮化铝陶瓷基板进行溅射,在氮化铝陶瓷基板籽晶层 上沉积金属过渡层; S42.利用金属靶材对沉积了金属过渡层的氮化铝陶瓷基板进行溅射,在金属过渡 层表面沉积一层金属层; 所述S41中沉积的金属过渡层为Ti/TiW,金属层为Cu层; 所述S41中沉积金属过渡层的步骤为:在线V、 氮化铝陶瓷基板温度100℃~200℃、溅射功率5kW~8kW条件下,在氮化铝陶瓷基板上通过 磁控溅射技术溅射金属过渡层,溅射时间为30min~40min,沉积金属过渡层厚度为300nm~ 350nm; 所述S42中沉积Cu层的步骤为:在线V、氮化铝 陶瓷基板温度100℃~200℃、溅射功率5kW~8kW条件下,在氮化铝陶瓷基板上通过磁控溅 射技术溅射金属过渡层,溅射时间为30min~60min,沉积Cu层厚度为1μm~10μm。 [0046] 所述步骤S5中退火是在氩气的氛围中进行的,退火温度为350℃,退火时间为1h至 3h。 [0047] 步骤S41:在特定的真空度、偏压、温度和溅射功率条件下,通过磁控溅射技术在氮 化铝陶瓷基板上沉积金属过渡层。根据金属过渡层的要求选择了适当的参数,以实现金属 过渡层所需要的厚度和质量。 [0048] 步骤S42:这些条件选择了适当的参数,以实现金属层所需的厚度和质量。 [0049] 步骤S5:退火在氩气的氛围中进行,退火温度为350℃,退火时间为1h~3h。这个选 择采用适当的退火条件,以促进Cu层的结晶和改善氮化铝陶瓷基板的金属化效果。 实施例六 [0050] 实施例三基础上,一种氮化铝陶瓷表面金属化方法, 在步骤S11之前使用表面活性剂处理氮化铝陶瓷基板,以改善氮化铝陶瓷基板表 面的润湿性和降低表面张力。这样可以更好地促进清洗剂的渗透和去除污染物,从而提高 清洗效果和减少残留。 [0051] 对于氮化铝陶瓷基板的表面活性剂处理,可以选择非离子型或阳离子型表面活性 剂。非离子型表面活性剂优选辛基酚聚氧乙烯醚 (Triton X‑100),阳离子型表面活性剂优 选十六烷基三甲基溴化铵 (CTAB)。 [0052] 处理温度:处理氮化铝陶瓷基板的温度在20℃~50℃之间。具体的处理温度可以 根据陶瓷基板材料的耐受性和表面活性剂的性质来确定。在选择温度时,要确保表面活性 剂在该温度下具有良好的分散性和润湿性。 [0053] 处理时间:处理时间在几分钟到数十分钟之间。实际的处理时间可以根据试验结 果和处理效果进行优化和调整。 实施例七 [0054] 实施例一基础上,一种氮化铝陶瓷表面金属化方法,在步骤S1之后且步骤S2之前, 采用微弧氮化技术对氮化铝陶瓷基板进行处理,形成氮化膜层。 9 9 CN 116986926 A 说明书 7/9 页 [0055] 在微弧氮化处理设备中,将氮化铝陶瓷基板装夹到微弧氮化设备的阳极上,确保 基板与阳极的紧密接触;在处理室中,氮化环境,通过电弧放电使气体中的氮分子离解成氮 离子,这些氮离子在电场的作用下,被加速并轰击氮化铝陶瓷基板表面,与氮化铝陶瓷表面 的金属铝元素发生反应。这种反应会在氮化铝陶瓷基板表面形成一层致密的氮化膜层。 [0056] 控制处理电压:根据氮化铝陶瓷基板尺寸和处理效果要求,设定处理电压在200V 至1000V之间。 [0057] 电流:微弧氮化的电流范围通常在10A至100A之间。 [0058] 气氛:微弧氮化在氮气(N)气氛中进行。 2 [0059] 温度:微弧氮化的温度范围通常在50℃至1000℃之间。 [0060] 采用微弧氮化技术形成氮化膜层的扫描电镜图如图4所示,从图4中可以看出经过 处理后在氮化铝陶瓷基板表面形成了一层较为致密的氮化膜层;采用微弧氮化技术对氮化 铝陶瓷基板进行处理的技术效果如下:(1)提高硬度和耐磨性:经过微弧氮化处理的氮化铝 陶瓷基板可以形成硬度较高的氮化膜层,从而提高其耐磨性和抗划伤性能。这对于在复杂 环境下使用的氮化铝陶瓷部件来说尤为重要。(2)增强陶瓷基板的耐腐蚀性:氮化铝陶瓷本 身具有较好的耐腐蚀性,但其表面通常存在着一些微小的裂纹和孔洞,容易受到腐蚀介质 的侵蚀。通过微弧氮化处理,可以在陶瓷基板表面形成均匀的氮化膜,能够有效防止腐蚀介 质的侵蚀,提高陶瓷基板的耐腐蚀性。(3)改善导热性能:微弧氮化处理可以改善氮化铝陶 瓷基板的导热性能,提高其散热效果。(4)改善表面光洁度和平整度:微弧氮化处理可以使 氮化铝陶瓷基板表面更平整和平滑,提高其表面的光洁度和平整度,对于某些光学和精密 加工应用非常重要。(5)增强附着力:微弧氮化处理可以在氮化铝陶瓷基板表面形成氮化膜 层,改善了陶瓷基板表面的润湿性能,提高附着力,增强与其他材料的结合能力,如金属层、 涂层等。 [0061] 氮化膜可以增强沉积AlN籽晶层与氮化铝陶瓷基板之间的结合能力和界面稳定 性,提高附着力和耐久性。通过使用ALD技术,在经微弧氮化技术生成的氮化膜层表面沉积 AlN籽晶层可以实现更好的晶体结构控制。经过微弧氮化处理的氮化膜层与氮化铝陶瓷基 板之间具有更好的匹配性和界面结合能力,通过在氮化膜表面沉积AlN籽晶层,可以进一步 增强氮化膜与基板的结合,提高界面的质量和稳定性;通过在氮化膜表面利用ALD技术沉积 AlN籽晶层,可以进一步提高膜层的稳定性和致密性,这是因为ALD技术可以在原子层级控 制沉积,形成致密、均匀的籽晶层,避免了可能存在的孔隙和缺陷。氮化铝陶瓷基板上沉积 AlN籽晶层的扫描电镜图如图5所示,图5中可以看出AlN籽晶层具有较小的晶粒尺寸和更均 匀的结构分布。图6为本实施例氮化铝陶瓷表面金属化后金属层扫描电镜图 ;从图6中可看 出氮化铝陶瓷基板表面金属层平整致密。 [0062] 综上所述,通过在经过微弧氮化处理的氮化膜表面利用ALD技术沉积AlN籽晶层可 以获得更好的结合性、界面稳定性、晶体结构控制和晶体质量,提高氮化铝陶瓷基板的性能 和应用潜力。 实施例八 [0063] 实施例一基础上,一种氮化铝陶瓷表面金属化方法,在步骤S4之后且步骤S5之前, 使用激光处理技术对沉积的金属层进行加热处理,以提高金属层的结晶性和晶界质量。这 10 10 CN 116986926 A 说明书 8/9 页 样可以进一步提高金属层的导电性和机械性能。 [0064] 当使用激光处理技术对沉积的金属层进行加热处理时,激光参数选择 :选择合适 的激光类型,例如连续波 (CW)激光或脉冲激光。 [0065] 设定激光功率,根据金属层的厚度以及所需处理效果来确定,通常在几十瓦至几 百瓦之间; 设定激光束直径和聚焦位置,将激光聚焦在金属层的特定区域,以实现局部加热; 使用激光扫描技术,将激光束在金属层表面进行快速扫描;控制激光束的位置和移动速度, 以确保整个金属层表面都受到激光处理。 [0066] 通过上述方法,可以在步骤S4之后且步骤S5之前,使用激光处理技术对沉积的金 属层进行加热,以提高金属层的结晶性和晶界质量,并确保整个金属层表面都受到激光处 理。具体的激光处理方式可以根据实际情况和要求进行调整和优化。图7为激光处理技术对 沉积的金属层处理后的金属层表面扫描电镜图 ;图7中可以看出,经激光处理后,金属层的 结晶性和晶界质得到了进一步提升,表面变得更加致密。 [0067] 根据所需的加热温度和时间,设定合适的激光照射时间,通常在数秒至几分钟之 间。 [0068] 以下是激光处理技术对沉积的金属层进行加热处理具体的操作步骤。 [0069] 首先,确保激光设备和相关辅助设备处于良好的工作状态,并且符合安全要求; 检查激光设备的功率、光束质量和聚焦系统的调整情况,确保其适合该特定应用。 [0070] 准备氮化铝陶瓷金属化基板,确保金属层的均匀性和质量。 [0071] 参数选择:根据金属层厚度,以及所需的加热效果,选择适当的激光类型、功率和 聚焦位置。 [0072] 根据预定的加热温度和时间要求,设定激光照射时间和频率。 [0073] 实施局部加热:将激光束聚焦在金属层的特定区域,确保激光束直径适合加热区 域的尺寸;将激光照射到金属层表面,使其局部加热到所需的温度。 [0074] 控制激光照射时间和强度,以确保金属层在加热区域达到目标温度;监测和控制: 使用温度探测器或红外热像仪等设备,实时监测加热区域的温度变化,并确保其在目标温 度范围内。 [0075] 根据实时温度反馈,调整激光功率和照射时间,以保持加热区域的稳定温度。 [0076] 激光扫描:使用激光扫描技术,将激光束在金属层表面进行快速扫描。激光扫描系 统可以控制激光束的位置和移动速度,以确保整个金属层表面都受到激光处理。 [0077] 冷却:在加热完成后,控制冷却时间和速度,以确保金属层在加热区域降温到所需 温度。 [0078] 检验和评估:对处理后的金属层进行检验和评估,检查是否达到所需的加热效果 和质量要求。例如可利用激光成像技术,实时观察金属层表面的情况,确保激光束在整个金 属层表面均匀地进行加热和冷却。激光成像系统可以提供实时的图像反馈,帮助调整激光 处理的参数和位置。 [0079] 如果需要,可以根据实际结果和需求进行进一步的优化和调整。 11 11 CN 116986926 A 说明书 9/9 页 实施例九 [0080] 实施例一基础上,在步骤S4中,金属过渡层配置为Cr/NiCr,金属层配置为银层,沉 积金属过渡层和银层的溅射条件为线V、氮化铝陶瓷基 板温度100℃~200℃、溅射功率5kW~8kW,其中溅射银层的时间为40min~180min,银层的 厚度为1μm~5μm。 [0081] 本发明的方法通过多个步骤的组合,实现了对氮化铝陶瓷表面的金属化处理,提 高了金属层与陶瓷基底之间的结合性能和润湿性,从而提高了氮化铝陶瓷的导电性和连接 性能。同时,方法使用了特定的处理条件和技术,以实现金属层的均匀沉积和优化的性能。 图8为本实施例氮化铝陶瓷金属化后截面扫描电镜图;做完ALD后再用磁控溅射沉积金属层 的效果,结合处无缝隙,结合紧密,镀层厚度均匀。 [0082] 在步骤S4中,根据功能需要过金属层还可配置为铝层,金层。若金属层选用铝层, 则溅射铝层时间为50min~200min,铝层的厚度为2μm~8μm;若金属层选用金层,则溅射金 层时间为20min~60min,金层的厚度为0.5μm~2μm。 [0083] 需要说明的是,上述说明书仅为本发明的一种实施方式,并不限于此。在保持本发 明原理的前提下,可以对实施方式进行组合、改变和修改,这些改变和修改都将落入本发明 的保护范围内。 12 12 CN 116986926 A 说明书附图 1/4 页 图 1 图 2 13 13 CN 116986926 A 说明书附图 2/4 页 图 3 图 4 14 14 CN 116986926 A 说明书附图 3/4 页 图 5 图 6 15 15 CN 116986926 A 说明书附图 4/4 页 图 7 图 8 16 16

  EMC体育 EMC易倍体育

  2、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问加。

  EMC体育 EMC易倍体育

  3、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。

  4、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档

  天津市西青区2022-2023学年八年级下学期期中考试数学试题和答案详解(word版).docx

  问题解决型护理品管圈QCC成果汇报之提高PICC患者健康宣教的知晓率.pptx

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者